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Dynamical localization of classical superdiffusion for the quantum kicked rotor is studied in the semiclas-
sical limit. Both classical and quantum dynamics of the system become more complicated under the conditions
of mixed phase space with accelerator mode islands. Recently, long time quantum flights due to the accelerator
mode islands have been found. By exploration of their dynamics, it is shown here that the classical-quantum
duality of the flights leads to their localization. The classical mechanism of superdiffusion is due to accelerator
mode dynamics, while quantum tunneling suppresses the superdiffusion and leads to localization of the wave
function. Coupling of the regular type dynamics inside the accelerator mode island structures to dynamics in
the chaotic sea proves increasing the localization length. A numerical procedure and an analytical method are
developed to obtain an estimate of the localization length which, as it is shown, has exponentially large scaling
with the dimensionless Planck’s constdngl in the semiclassical limit. Conditions for the validity of the
developed method are specified.
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I. INTRODUCTION This tunneling takes place through the boundary structure,
which behaves as a potential barrier for long time dynamics.
Systems with mixed phase space, where the motion ihn this case a rate of exponential decay of the initial popula-
some regions of phase space is chaotic and in other regionstion or a survival probability due to quantum tunneling de-
regular, model many physical problems. A paradigm of suchermines a rate of localization of the initial wave packet. We
systems is the kicked rotdstandard map For most values argue here that the localization length relates to the coeffi-
of parameters it was found to exhibit classical diffusion incient of quantum tunneling. The tunneling mechanism pro-
phase spacfl-5]. This diffusion is suppressed by quantum vides an increase of the localization length, which as it is
interference, leading to localization in phase sg&lewhich ~ shown here, has exponentially large scaling with the dimen-
is similar in nature to Anderson localization in condensedsionless Planck’s constant in the semiclassical limit.
matter physic§7]. For some values of parameters stability —The kicked rotor can be defined in some units by the
islands, namely accelerator mode islands, emerge bifurcddamiltonian
tively from marginally stable points inside a chaotic sea
[8,9]. These islands correspond to complicated solutions with )
trajectories that are neither rational nor ballistically mono- H=p%/2+K cosf :E_w s(t=1), 1.1
tonic (their geometrical characterization is different from
resonant islands in the near integrable njit0]. Islands  \herep is the angular momentund, is the conjugate angle,

such as there were first considered in Re1] (see alsd9]),  andt is the time. The resulting classical motion is given by
and for the standard map these were first studid@jnThe  {he standard map

main role of the islands’ boundaries for classical transport is

©

their sticky nature, i.e., the long stay of trajectories inside p’'=p+Ksiné,
boundary layers. For the general case these accelerator mode
islands can coexist with regular or resonant islands. Resonant 6'=6+p’, (1.2

islands were studied in detail [42,13. Unlike the resonant

islands, stickiness to boundary layers of the accelerator modghere § and 8’ are the angles at the two consecutive kicks,
islands leads to superdiffusion. Therefore, for some values afhile p andp’ are the values of the angular momentum just
the parameters, influence of the boundary structures dombefore each of these kicks. The classical motion takes place
nates the classical transport, which is stronger than diffusioan the infinite cylinder wherg is unbounded, while— 7

for these value$14-16. For long time quantum dynamics, < g<. ForK=K* =0.97...chaotic regions are connected
the regular parts of the accelerator mode islands dominaignd for most values of parameters diffusion in momentum
the quantum transport. In the present work we will exploretakes place, namely

how these accelerator mode islands affect the quantum dy-

namics. We will conclude that localization in phase space (p?)=D(K)t, (1.3
also takes place for these values of the parameters, but in a

different way. Namely, for quantum localization to take where (...) denotes the average over initial conditions
place, quantum tunneling from the inner regular parts of th¢1—3]. Different classical behavior can be found as well. The
accelerator mode islands to the chaotic sea is crytigl marginally stable points are defined by the conditidhis
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0.03 . v for some time in the island chains and their propagation in
04 0.02 S : phase space is faster than diffusida —16. This results in
0.2 0.01 anomalous diffusion, namely
o 0 a 0 <p2>~tp' (16)
_02 -0.01
-0.02 with u>1. This anomalous diffusion can be found for a
o4 e ~0.03 large variety of narrow regions & (see Fig. 8 in Ref14]).
—0Bf L 004 v _ The diffusive classical behfivior is supp_ressed by quantum
1.8 92 22 1.75 1.86 1.85 interferencd 6,7,18. To study its effects it is useful to intro-
duce the evolution operator
0.3 i
02 ;:7”? 025 U=exp{ —ihn?/2}exp —i (K/h)cosb}, 1.7
0.1 e ¥ i _
e o 0% ? N 02y whereh is the dimensionless Planck’s constant, and the an-
o 4 . gular momentum in these units ps=hn, with n=—ia/46.
' 6“ /i 015 The eigenvalues df) aree ', where the real numbes is
02 S c , the quasienergy and the corresponding eigenstates are the
-03 01 quasienergy states.
1.6 1.8 2

Suppression of diffusion means that the quasienergy states
are localized in angular momentum. For most valueXof

FIG. 1. Phase portrait of the map Hd.2), where(a) and(b) are ~ >K* these were found to be exponentially localized and for
sequences of island chains of the first and second generations, leyge K and smalih the localization length im is [19,20]
spectively, with periods 3 and 8 fat =K); (c) and (d) are the
same aga) and (b) for K=K with period 5 for the first genera-
tion and 11 for the second one.

v

£=D(K)/2h?. (1.8

Deviations were found near accelerator modes and the
X 4 ; X X “magic” numbers[21-24. There is an infinite set of so—
points are shifted by a constant valuepiat each iteration of called “magic” numbers for which the diffusion is anoma-
the map Eq.(1.2)., namely .t.he Sh'ft. .binW.k fpr 0= lous [14]. The existence of localization and its nature were
+ 77/2 correspondingly. If initial conditions coincide exactly questioned for these values &f [17,21,22,25—2F This

with these points we encounter the accelerator mgdgs question is relevant for experiments on localization in linear

resulting in momentum of driven laser cooled atofis].
2y 12 14 The purpose of the present work is to study localization
(pH~1 (14 for such “magic ” values ofK. For the complete quantum

dynamics theh scaling according to Eq(1.8) is relevant
[21,26. Nevertheless, influence of the accelerator mode is-
0<K—K,<AK, (1.5 lands on Iocaliza_tion has_ be_en _observed i_n_ a change of the
shape of the stationary distribution probability over momen-

a new set of islands is generatf®}10,14, called tangled tum states for these values bflarger than the area of the
islands in[10], as a result of bifurcation. Dynamics inside islands. Deviation from the scaling of E¢L.8 was also

the islands is known as the accelerator mddd,14.  observed22] when the quantum parameterdecreases and
Changes oK within the interval Eq(1.5) strongly influence becomes compareable with the area of the accelerator mode
the topological structures of the accelerator mode islandgsland structure. We show here that the presence of the ac-
Examples of such structures are presented in Fig. 1. Bounaelerator mode islands is crucial for semiclassical analysis of
aries of these islands are complicated structures which cajuantum localization of anomalous diffusion. The main
exhibit self-similar infinite hierarchical island chains for quantum effect that has to be considered is tunneling. As a
some specific values of the parameiethat are known as result of tunneling, the occupation of the accelerator mode
“magic” numbers. For example, for K=K®  decays exponentiallyl7,25. For the boundary islands chain
=6.90874 ... thenumber of islands in the various genera- of the accelerator mode, gaps between islands behave as ef-
tions (in increasing orderis (3,8,8,8...) [14], while for  fective barriers if these become smaller than the de Broglie
K=K®=6.47693... itis (5,11,11,11...) [15,16 (see  wavelength, resulting in the crossover between quantum and
Fig. 1). Trajectories with initial points in the inner regular classical trappind29—-34 (see detailed discussion in Ref.
region are trapped inside and in each step of the map thefjB1] and references therginin Sec. Il a variant of the quan-
momentum increases byr? resulting in acceleration and a tum map generated by E¢L.7) will be constructed for nu-
growth of the momentum of the form E@l.4). Because of merical exploration of the quantum effects on transport for
the island chains these structures also affect trajectories thaalues ofK where phase space structures like those of Fig. 1
are started in the chaotic region. Such trajectories are trappetde expected to be important. These structures should be of a

=27K, (pg,bp)=(2mm,=x/2) with integer K,m). These

In the vicinity AK, of such valueK for
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substantial size on the scale of the Planck’s consharin JU=exp{—ih(n+2m/N)?/2}
Sec. Il the tunneling rate will be estimated analytically and 5 _
the analytical predictions of dynamics for the survival prob- Xexpg{ —i(K/h)cosf#—i2m6/h}. (2.3

ability will be compared with the numerical results. The co-

efficients of tunneling will be obtained numerically for the Parts of the wave function that are not trapped in the accel-
two different values oK related to the structures shown in €rator mode island do not propagate b2 in p per step.

Fig. 1. In Sec. IV the results on the transport will be used toTherefore the action of the shift on those parts is not simply
develop an estimate for the localization length to specifyelated to the dynamics of the part of the wave packet in the
what is the difference compared to the formula8) for region Ap, where the survival probability is calculated. To
these special values &f It will be shown that in the frame- avoid complications, these contributions are eliminated by
work of the semiclassical considerations the localizatiorthe absorbing boundary conditions at the edges of the inter-
length increases exponentially with For other values ok~ V& AP. If in this region there arél states with—(N+1)/2
localization, that was found in the past, as expected. Condi=n=(N—1)/2 the action of the projection operatBron an
tions when Eq(1.8) is valid for localization of anomalous angular momentum state with the amplituideis

diffusion have been well discussdédee Refs[21,27] and

[26]). The summary of the analysis is presented in Sec. V. A fo - N+1 <n< N—-1
Pf = 2 2 (2.9
Il. QUANTUM TRANSPORT FOR THE ACCELERATOR 0: otherwise.

MODE STRUCTURES: NUMERICAL CALCULATIONS
The quantum map used to follow the evolution of the wave

In this section the long time behavior of the survival prob éaacket due to the accelerator mode island is therefore

ability of a quantum particle in an accelerator mode island i
studigd numerically. In what follows, we call this type o_f ¥, ,=PI0V,, (2.5
solution an accelerator mode island structure or, for brevity,
structure, to stress that for quantum dynamics, both boundaryng the survival probability in the regiahp is
layers and regular parts of the accelerator mode islands are
important. Moreover, as it will be seen, the regular part of P(t)=|W¥2 (2.6
the islands plays the role of a potential well for the quantum
wave packet, while the island boundary layers behave as Because of the form of the dynamics Eg.5), this survival
potential barrier through which the wave packet tunnels. Nuprobability can be interpreted as the survival probability in a
merical study of the problem is based on investigation of theéspecific accelerator mode island, the one régar /2 in our
quantum survival probability in some domaidpe case. The operataPJU of Eq. (2.5 enables us to explore
(=, ) that includes a structure like those shown in Fig. 1.the survival probability of a wave packet in an accelerator
The main problem in the numerical exploration results frommode island by following one island. Since the decay of the
the fact that a part of the wave function that belongs to thasland survival probability is very slow, straightforward cal-
islands structures propagates as an accelerator modeglongey|ations of the evolution by requires an extremely large
A simple way to avoid this type of escape frolip and to basis[35]. The shift keeps the island in its original position
calculate t.he probablllty of the particle remalnlng |n3|d.e the_ o explained following Eq(2.2). In order to identify the
structure, 'gnoring thg parts tha't 'Ieak out fraﬁp, IS to Sh,'ft occupation probability of the island with the one of the in-
the structure to its original position. A shift by anyno in terval Ap, particles should be eliminated when they reach
momentum is induced by the shift operator the boundary of the interval. This is precisely the effect of
f]=exq—in 0) 2.1) the absorbing boundary conditions. The evolution of the
0vh ' wave function starting from the initial state=0, which is
which application to an arbitrary wave functio(g)  Uniformly spread ind, is presented in Figs. 2 and 3. We see
=3 f.e" gives that gfter many |terat|ons_ only the part conf!ned to the !sland
survives. ThereforeP(t) is indeed the survival probability
(n—n0)6 ino inside the island.
W(0)= ; foe o= ; fn+no e (2.2 The survival probabilityP(t) was calculated from the ini-
tial staten=0 that overlaps the accelerator mode islands
Therefore, Eq(2.1) is equivalent to the application of the structure. The survival probabilitp(t) as a function of time
operatore "0”"" to amplitudesf, in Eq. (2.2). Here we is presented in Figs. 4 and 5. The effective Planck’s constant
study accelerator modes, where the change of momentum hyas taken afh=2=/(N+g), whereg=(y/5—1)/2 is the
one iteration is+ 2. Therefore, in order to return an accel- inverse golden mean ari is in the interval (5<10%, 2.5
erator mOde structure to |tS 0r|g|na| pOSItIOh we haVe tOx 104) Th|5 Ch0|Ce th determ”']es the number Of Stams
chooseny,=+2x/h. We choose the mode with the initial in a classical unit cell of phase space, such that the classical
angle 6= /2 (see Fig. 1 and the corresponding shift op- |imit h—0 has a transparent meaning of an infinite number
erator withny=2x/h in Eq. (2.1). Therefore, in the numeri- of states in a cell. Another important property of this repre-
cal calculations the evolution operator is replaced by sentation is irrationality of the reduced Planck’s constant
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- - p - - 9 FIG. 4. Typical evolution of the quantum survival probability

for N=10557 andK =K%, The doted lines correspond to the nu-
FIG. 2. The probability amplitude for the four time&) t=1,  merical calculations and solid lines to the analytical forn(@4.6).
(b) t=10, (c) t=100, and(d) t=1000 iterations. The solution is
obtained by iterations of the quantum méh5) for K=K and  pehavior was found when the initial wave function does not
N=5557 with the initial condition fon=0. overlap the accelerator mode islai&l]. It will be discussed
at the end of the next Sec. Il
h/2#, so that the obvious quantum resonan86] result-
ing in ballistic motior( p?)~t? are avoided. The value of the 1ll. QUANTUM TRANSPORT FOR THE ACCELERATOR
effective Planck’s constant is controlled by the variation of MODE STRUCTURES: ANALYTICAL ESTIMATE
N. The simulation time is sufficiently long so that it is longer

than the Heisenberg timl or comparable to it. Different We now calculate the tunneling from an accelerator mode

island within some approximations. The map Ef§.2) can
be expanded in the small vicinity of the accelerator modes

-3 -
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FIG. 3. The level occupation probability amplitude vs angular
momentum corresponding to the wave functions presented in Fig. 2. FIG. 5. The same as Fig. 4, fér=K(?),
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FIG. 6. The potentiaV(x)
Sp' =6pEtAy—(+)m56%

80’ =560+ 6p’, (3.1
whereAy=K—2xk, dp=p—2mm, and 6= 0— (= =/2).
For the sake of definiteness we confine ourselveseto
= 7/2 (the result ford= — 7/2 is identica). The differences
betweendsp’ and Sp and betweensd’ and 56 are very
small, therefore the map E¢3.1) can be approximated by
the Hamilton equations generated by the Hamiltonian

Haee= P22+ V(X), (3.2

where dp is replaced byp, §6 by x, and the potential is

aw
V(X)=—Agx+ 5 x3

3 (3.3

and is depicted in Fig. 6. The Hamiltonia(8.2) with the
potentialV(x) of Eq. (3.3) was obtained i8] and in a more

PHYSICAL REVIEW E 65 036215

P(t)= fEmaxdEp(E).e—7<E>fPE(t=0), (3.6)

min

wherep(E) is the density of states at energy while Eax
andE,,;, are the maximal and minimal energies of states that
are trapped in the well. It was assumed that this semiclassical
formula holds for states as high Bg,,.. This will not intro-
duce a large error because the states in the viciniti of;
decay vary fast. The potentidf(x) of Eq. (3.3 satisfies
V(—x)=—V(x), therefore,

b
Sns(E)=2fa V2(V(x)—E)dx

=2f:' J2I(—E) —V(—x)]dx

=2jab//p(—E)dx=S(—E), 3.7

where S(—E) is the action of a periodic orbit of energy
—E in the well (see Fig. & The symmetry of the potential
also impliesE .= —Emin=Eo- The semiclassical density of
states is

1 dSE) T(E)

E)=——= =—.
P(E) 27wh dE 2mh

(3.9

Consequently, the survival probability E3.6) takes the
form

P(t)= — fEO dE(dS)

2’7TT1 —Eg dE

xexg —te” SCOMNT(E)Pe(t=0). (3.9
Since there is no general relation betwe&E) and
S(—E), in order to make progress, an approximation for
S(E) will be introduced. It will be approximated by the lin-

general way in9], while the topology of islands produced ear function of energy

by the Hamiltonian was studied [14]. In the semiclassical
Wentzel-Kramers-Brillouin  approximation
probability per unit time of a particle with enerdy out of
the potential well is

y(E)=exp{ — Snd E)/R}H/T(E),

where Si,(E)=f2/2(V(x) —E)dx is the instanton action,
the pointsa andb are the limits(turning point$ of the mo-

tion under the barrietsee Fig. 6, andT(E) is the period of
the classical motion with enerdy in the well. The survival
probability at the energ is

(3.9

Pe(t)=e "BP(t=0). (3.5

The resulting total survival probability is

the tunneling

S(E)=~Sy+TgE, (3.10

whereSy=S(E=0) and

ds
To=T(E=0)= E|E:0

are the action and the period f&r=0. Within this approxi-
mation the period is approximated by its value at zero energy
T(E)~T,. This approximation should be reasonable for a
wide range of energy since even at the separatrix the depen-
dence of the period on energy is logarithmic, name{§)
~In(E;—E). Within the linear approximation of the action
Eq. (3.10, the survival probability3.9) takes the form
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To (o t IR s ToE/M i
P(t)=—= dEexp — —e So/MeToE/Mp_(1=0).
2mh =) TO
(3.1 -15¢
In order to complete the calculation we have to make some °
assumptions on the initial distribution. We will assume first
that Pg(t=0)=PP°, which is independent of energy. Then
the integral(3.11) can be evaluated by the change of variable _ -25¢
to y=e"o¥" namely, 5
c
PO ry.dy F{ ty ~} —30r
=-—| —exp—=—e SN 3.1 o
277 y_ y TO ( 2
-35} o
wherey. =e*Tofo/N Therefore,
po t _ t . 0 0
- — e (So*+ToE)/h | _E. | — g~ (So—ToEo)/h
o-Flelgeeiefgee TN
(3.13 ~4300 1000 1500 2000 2500 3000 3500
1/h
and within the linear approximation ~ B
0 FIG. 7. The tunneling coefficientgh) vs 1h, where O) mark
t = t = the result of numerical calculations fé¢=K® and (¢) for K
_ ~S(Eg)/h —S(—Eg)/h
P(t)= o El(T_Oe S0 >_ E: _oe (“Fo ” =K@, The solid lines are the slopes obtained by the least squares
(3.14  fit

Here E.(z)=f,dy e Yy is the exponential integrdl37].

. These predictions are compared with the survival prob-
Note that the arguments of the two terms in 2114 can be P b P

= ability inside the accelerator mode island calculated numeri-
very different, their ratio is exXpS(Eo)~S(—Eg)lh}  cally for the initial staten=0, that has large overlap with the
=e?Tofo™. For small values of its argument the exponentialaccelerator mode islands. Representative results are shown in
integral behaves &s,(z)~ —C+In(1/z), whereC is Euler's  Figs. 4 and 5, where the numerical simulations are compared
constant while the large argument asymptotic behavior igyith the analytical prediction Eq3.16), where the param-
E1(2)~e*z. Therefore, for etersa and c(h) were fitted. ForkK(*) these were found to
t/TO>eS(—EO)/ﬁ (3.15 take the valuesa:0.0(_)G _and c(h)y=5x10"7 for _N
=10557, and the contribution of the second term in Eq.
the result Eq.(3.14 for the survival probability simplifies (3.18 is negligible. Fork® the valuesa=0.0028, c(h)
and takes the form =101 and a’=0.00064,c’(h)=10"2 for N=10557
were obtained. In order to check E8.17), h(N) was varied

P(t)=ak(c(h)), (3.19 and the results are presented in Fig. 7. The least squares fit
with results inc;=60x 10> andc,=0.0029+0.000 03 forK %),
while ¢;=2.25x107° and c,=0.0104-0.0019 for K.
c(h)=c,e %2/, (3.17  From these results one concludes thatKét) the potential

barrier is more penetrable to quantum tunneling than for
For the specific potential3.3) used in the calculationa K. We conclude that for quantum systems, initially popu-
=PY%27, while ¢;=1/T, andc,=S(— E,). The calculation lated in the accelerator mode islands, the survival probability
presented here was done for the specific pote(8i8) thatis  satisfies Eq(3.16), therefore,
the relevant one for the kicked rotor. Also for other systems
the accelerator mode islands are described by cubic poten-

tials [9,10] and in this sense the classical dynamics is uni- —C—Inc(h)t: t<1/c(h)
versal, therefore the form E@3.16 with Eq. (3.17) of the P(t)=a ety - (3.19
survival probability is expected to be universal as well. If the e “W/e(ht:  t>1lc(h)
approximation(3.15 cannot be made, and the second term in
Eqg. (3.14 cannot be neglected, then EE@.16 should be 5
replaced by andc(h) is given by Eq.(3.17.
_ _ It is reasonable to anticipate the same asymptotic behavior
P(t)=aE;(c(h)t)—a’E;(c’(h)t), (3.18  of P(t) for the initial population in the chaotic region, be-

L cause the exponential localization of the wave packet as well
where the dependence of(h) onh is similar to Eq.(3.17). as the localization length should be independent of choice of
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the initial conditions. This result is because wave functionssimilarly to the survival probability of particles that were
on the accelerator mode islands structures are coupled to tls¢arted in the chaotic component.

ones in the chaotic sea via tunneling, and therefore, they are

expanded in terms of the same set of eigenfunctions. The IV. THE QUASIENERGY STATES

asymptotic decay is dominated by the eigenfunctions with

the slowest decay. Consequently, the exponential decay of | this section a form of the quasienergy states implied by
the survival probability for the initial population in the cha- {he transport found in Secs. Il and 11l is proposed. Any wave
otic region should be the same as in E8.19 for asymp-  fynction can be expanded as

totically long times(t>1/c(h)). Indeed, for a time shorter
than the quantum-classical crossover, explore@ih31],
classical sticking takes place. For longer times the trapping is
guantum mechanical and the survival probability is given by
Eq. (3.1D but the initial distribution is proportional to the wherey,,(0,t) are the quasienergy states and the expansion

P(0,0)="2, Coth,(6,1), (4.)

probability of tunneling through the barrier, namely, coefficients areC,=(#,(6,t=0)|4(6,t=0)). Therefore,
N localization in transport and localization of the quasienergy
Pe(t=0)=Ae SnsB)/h (3.20  states are closely related. In Sec. Il the survival probability

on accelerator mode islands was calculated as a function of
whereA is a constant. The reason is that for this initial prepa-time. Since in one time step a trajectory in the accelerator
ration the occupation probability of a state is determined by, e island structure travels a distance i p or 27/h in
its coupling to the chaotic compon€r@8]. Using Eq.(3.10

one obtains n, in a timet the distance it travels in is n=(2#/h)t. The

resulting spread im can be inferred from the results of the

previous section simply by the substitution fwf/27 for t.

ATy (Eo t ~ ~ ~ ~
P(t)= — dEexp{— _I_—e*SO”‘eTOE’h e~ So/hgToB/h, Consequently, for long distances one concludes from Egs.

2mhJ-& 0 (320 (3.19 and(3.24 that the occupation probability decays as
F o P(n)~e 2"¢n 4.2
Changing the integration variable wp=e~/NeTof/" one (") 42
finds with
A ! — Te(h) — ¢, /T,
P(t) = ijyfdy & VITo, (3.22 &=4mihc(h)=(4m/c,)e%2’"h. (4.3

The prefactor cannot be determined reliably from such heu-
ristic considerations. The quasienergy states are expected to
decay exponentially with the localization lengéhof Eq.

] (4.3). For smallh, where our results are derived, it is much

+ToE/

wherey’. =e~%/Me , resulting in

5 larger than the localization length E@L.8) resulting from
suppression of normal diffusion by interference. For the be-
U s—eyin havior on distances shorter th@n where the decay of the
—exp — T_oe o (823 gyrvival probability is weaker than exponential, the decay of
wave functions as a function of is weaker than the expo-
For t/TO>eS(—EO)/E the second term is negligible, resulting nential as well. The_prgdiction; _in this regime are different
in for the two types of initial conditions considered in the pre-
vious Sec. lll. In general one therefore expects, for distances
P(t):be—c(ﬁ)t/t, (3.24 smaller than the localization length, that the distribution be-
haves as

t -
— — e S(Eg)h
exp[ Te

wherec(h) is given by Eq.(3.17). Comparing this result to
Eq. (3.19 we note that the long timé> 1/c(h)) asymptotic

behavior for these two types of initial conditions, one in thewhere the two contributions result from Eq.19 and
accelerator mode island and the other in the chaotic region, i®.24). The constant#,; andA, are determined by the initial
identical. For short timé< 1/c(h) the decay of wave packets conditions.

P(n)=A;[—C—In(n/&)]+A,/n, (4.4

started in the chaotic component is much faster, that is, It should be noted that formulad.8) and (4.3) do not
relate to each other, and there is no contradiction between
P(t)~blt, (329 them. Theh scaling of the localization length according Eq.

~1/R2 i
in agreement with the result ¢81]. In addition, particles (18, namelyé~1/h?, was also observed for anomalous dif

that were initially in the accelerator mode island may tunneffusion with large(in the quantum limit values ofh as well
out to the chaotic component and then back into acceleratd?1,22,28. In this case formuld4.3) cannot be applied, be-
mode island. Consequently their survival probability behavegause the values df are larger than the accelerator mode

036215-7



A. IOMIN, S. FISHMAN AND G. M. ZASLAVSKY PHYSICAL REVIEW E 65 036215

island area, and it is impossible to “put” even one level for a very long time. In this way the decay of the survival

inside the island structure. In the opposite regime, winés  Probability of the wave packet in an island could be com-
small enough to make it possible to contain a few levels, aputed and the form of the analytical expression E3j14
least inside the structure, a part of the wave packet spreads g8uld be verified. The result E¢3.25 for the wave packet
the accelerator mode does. In this case the present analysisst@rting in the chaotic region was verified [i81] using the

valid and formula(4.3) for the’h scaling of the localization same numerlqal method for a relatively shor_t time. It IS Im-
length holds. portant to notice that the accelerator mode islands with the

Because different quasienergies may exhibit different peghain structure around them form a much more complicated
havior related to the the values Af andA,, it is reasonable phase space structure than the model pote(8ig), but the

to speculate that their distribution depends onlynéé, since qualitative behavio_r of the survival probabil_ity is simil_ar.
their behavior is dominated by tunneling agids thé scale This demonstrates its robustness. The tunneling results in the

determined by this process. This should holchifs suffi- decay of the classical accelerator modes. It sets a time scale

ciently large so that classical trapping by the boundary is1/c(h) of Eq.(3.17), leading to a localization lengthiof Eq.
lands chain is not important. For short distances, shorter thatf-3) for this process. Transitions between the chaotic region
those corresponding to time scales shorter than (1)~ and the accelerator modes take place by tunneling. Localiza-

[the time scale corresponding to quantum classical crossov%_'Pn that ultimately takes plac89] results in exponential

1 ifi the t t tin Ea. (1.6)1 th ocaIizaFion on a length scgle on the orderadnd should be
hme by e boundany Lt e e f isseal originthe Subject of further studies. | |
This work demonstrates how a classical structure in a

This results in various power law decays on the very short_. .
P Y y mixed system(a system where part of the phase space is

distances, shorter thanmZ; /h, related to the decay of the  haotic and part is reguladecays as a result of tunneling. If
classical survival probability of particles trapped in the o effective Planck’s constant (divided by the natural ac-

boundary islands chain, relevant for the specific valu&of o, of the systeris small, this time can be extremely long,
that is considered. A crucial assumption made in this work iS¢ is the case in the present work.

that the irrationality ofh prevents resonant tunneling be-
tween the accelerator mode islands. This assumption still re-
quires justification. It is expected to hold for the same rea- ACKNOWLEDGMENTS
sons it holds for the other values Kf[7,19].
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