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Quantum localization for a kicked rotor with accelerator mode islands
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Dynamical localization of classical superdiffusion for the quantum kicked rotor is studied in the semiclas-
sical limit. Both classical and quantum dynamics of the system become more complicated under the conditions
of mixed phase space with accelerator mode islands. Recently, long time quantum flights due to the accelerator
mode islands have been found. By exploration of their dynamics, it is shown here that the classical–quantum
duality of the flights leads to their localization. The classical mechanism of superdiffusion is due to accelerator
mode dynamics, while quantum tunneling suppresses the superdiffusion and leads to localization of the wave
function. Coupling of the regular type dynamics inside the accelerator mode island structures to dynamics in
the chaotic sea proves increasing the localization length. A numerical procedure and an analytical method are
developed to obtain an estimate of the localization length which, as it is shown, has exponentially large scaling
with the dimensionless Planck’s constanth̃!1 in the semiclassical limit. Conditions for the validity of the
developed method are specified.
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I. INTRODUCTION

Systems with mixed phase space, where the motion
some regions of phase space is chaotic and in other regio
regular, model many physical problems. A paradigm of su
systems is the kicked rotor~standard map!. For most values
of parameters it was found to exhibit classical diffusion
phase space@1–5#. This diffusion is suppressed by quantu
interference, leading to localization in phase space@6#, which
is similar in nature to Anderson localization in condens
matter physics@7#. For some values of parameters stabil
islands, namely accelerator mode islands, emerge bifu
tively from marginally stable points inside a chaotic s
@8,9#. These islands correspond to complicated solutions w
trajectories that are neither rational nor ballistically mon
tonic ~their geometrical characterization is different fro
resonant islands in the near integrable limit! @10#. Islands
such as there were first considered in Ref.@11# ~see also@9#!,
and for the standard map these were first studied in@8#. The
main role of the islands’ boundaries for classical transpor
their sticky nature, i.e., the long stay of trajectories ins
boundary layers. For the general case these accelerator m
islands can coexist with regular or resonant islands. Reso
islands were studied in detail in@12,13#. Unlike the resonant
islands, stickiness to boundary layers of the accelerator m
islands leads to superdiffusion. Therefore, for some value
the parameters, influence of the boundary structures do
nates the classical transport, which is stronger than diffus
for these values@14–16#. For long time quantum dynamics
the regular parts of the accelerator mode islands domi
the quantum transport. In the present work we will explo
how these accelerator mode islands affect the quantum
namics. We will conclude that localization in phase spa
also takes place for these values of the parameters, but
different way. Namely, for quantum localization to tak
place, quantum tunneling from the inner regular parts of
accelerator mode islands to the chaotic sea is crucial@17#.
1063-651X/2002/65~3!/036215~9!/$20.00 65 0362
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This tunneling takes place through the boundary structu
which behaves as a potential barrier for long time dynam
In this case a rate of exponential decay of the initial popu
tion or a survival probability due to quantum tunneling d
termines a rate of localization of the initial wave packet. W
argue here that the localization length relates to the coe
cient of quantum tunneling. The tunneling mechanism p
vides an increase of the localization length, which as it
shown here, has exponentially large scaling with the dim
sionless Planck’s constant in the semiclassical limit.

The kicked rotor can be defined in some units by t
Hamiltonian

H5p2/21K cosu (
l 52`

`

d~ t2 l !, ~1.1!

wherep is the angular momentum,u is the conjugate angle
and t is the time. The resulting classical motion is given
the standard map

p85p1K sinu,

u85u1p8, ~1.2!

whereu andu8 are the angles at the two consecutive kick
while p andp8 are the values of the angular momentum ju
before each of these kicks. The classical motion takes p
on the infinite cylinder wherep is unbounded, while2p
<u<p. For K>K* 50.97 . . . chaotic regions are connecte
and for most values of parameters diffusion in moment
takes place, namely

^p2&5D~K !t, ~1.3!

where ^ . . . & denotes the average over initial conditio
@1–3#. Different classical behavior can be found as well. T
marginally stable points are defined by the conditionsKk
©2002 The American Physical Society15-1
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52pk, (p0,u0)5(2pm,6p/2) with integer (k,m). These
points are shifted by a constant value inp at each iteration of
the map Eq.~1.2!, namely the shift by62pk for u05
6p/2 correspondingly. If initial conditions coincide exact
with these points we encounter the accelerator modes@2#
resulting in

^p2&;t2. ~1.4!

In the vicinity DKk of such valuesK for

0,K2Kk,DKk ~1.5!

a new set of islands is generated@8,10,14#, called tangled
islands in@10#, as a result of bifurcation. Dynamics insid
the islands is known as the accelerator mode@17,14#.
Changes ofK within the interval Eq.~1.5! strongly influence
the topological structures of the accelerator mode islan
Examples of such structures are presented in Fig. 1. Bou
aries of these islands are complicated structures which
exhibit self-similar infinite hierarchical island chains fo
some specific values of the parameterK that are known as
‘‘magic’’ numbers. For example, for K5K (1)

56.908 745 . . . thenumber of islands in the various gener
tions ~in increasing order! is (3,8,8,8, . . . ) @14#, while for
K5K (2)56.476 939 . . . it is (5,11,11,11, . . . ) @15,16# ~see
Fig. 1!. Trajectories with initial points in the inner regula
region are trapped inside and in each step of the map t
momentum increases by 2p, resulting in acceleration and
growth of the momentum of the form Eq.~1.4!. Because of
the island chains these structures also affect trajectories
are started in the chaotic region. Such trajectories are trap

FIG. 1. Phase portrait of the map Eq.~1.2!, where~a! and~b! are
sequences of island chains of the first and second generation
spectively, with periods 3 and 8 forK5K (1); ~c! and ~d! are the
same as~a! and ~b! for K5K (2) with period 5 for the first genera
tion and 11 for the second one.
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for some time in the island chains and their propagation
phase space is faster than diffusion@14–16#. This results in
anomalous diffusion, namely

^p2&;tm ~1.6!

with m.1. This anomalous diffusion can be found for
large variety of narrow regions ofK ~see Fig. 8 in Ref.@14#!.

The diffusive classical behavior is suppressed by quan
interference@6,7,18#. To study its effects it is useful to intro
duce the evolution operator

Û5exp$2 i h̃ n̂2/2%exp$2 i ~K/h̃!cosu%, ~1.7!

whereh̃ is the dimensionless Planck’s constant, and the
gular momentum in these units isp̂5h̃n̂, with n̂52 i ]/]u.
The eigenvalues ofÛ aree2 iv, where the real numberv is
the quasienergy and the corresponding eigenstates are
quasienergy states.

Suppression of diffusion means that the quasienergy st
are localized in angular momentum. For most values ofK
.K* these were found to be exponentially localized and
largeK and smallh̃ the localization length inn is @19,20#

j5D~K !/2h̃2. ~1.8!

Deviations were found near accelerator modes and
‘‘magic’’ numbers @21–24#. There is an infinite set of so–
called ‘‘magic’’ numbers for which the diffusion is anoma
lous @14#. The existence of localization and its nature we
questioned for these values ofK @17,21,22,25–27#. This
question is relevant for experiments on localization in line
momentum of driven laser cooled atoms@28#.

The purpose of the present work is to study localizat
for such ‘‘magic ’’ values ofK. For the complete quantum
dynamics theh̃ scaling according to Eq.~1.8! is relevant
@21,26#. Nevertheless, influence of the accelerator mode
lands on localization has been observed in a change of
shape of the stationary distribution probability over mome
tum states for these values ofh̃ larger than the area of th
islands. Deviation from the scaling of Eq.~1.8! was also
observed@22# when the quantum parameterh̃ decreases and
becomes compareable with the area of the accelerator m
island structure. We show here that the presence of the
celerator mode islands is crucial for semiclassical analysi
quantum localization of anomalous diffusion. The ma
quantum effect that has to be considered is tunneling. A
result of tunneling, the occupation of the accelerator mo
decays exponentially@17,25#. For the boundary islands chai
of the accelerator mode, gaps between islands behave a
fective barriers if these become smaller than the de Bro
wavelength, resulting in the crossover between quantum
classical trapping@29–34# ~see detailed discussion in Re
@31# and references therein!. In Sec. II a variant of the quan
tum map generated by Eq.~1.7! will be constructed for nu-
merical exploration of the quantum effects on transport
values ofK where phase space structures like those of Fig
are expected to be important. These structures should be

re-
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QUANTUM LOCALIZATION FOR A KICKED ROTOR . . . PHYSICAL REVIEW E 65 036215
substantial size on the scale of the Planck’s constanth̃. In
Sec. III the tunneling rate will be estimated analytically a
the analytical predictions of dynamics for the survival pro
ability will be compared with the numerical results. The c
efficients of tunneling will be obtained numerically for th
two different values ofK related to the structures shown
Fig. 1. In Sec. IV the results on the transport will be used
develop an estimate for the localization length to spec
what is the difference compared to the formula~1.8! for
these special values ofK. It will be shown that in the frame-
work of the semiclassical considerations the localizat
length increases exponentially withh̃. For other values ofK
localization, that was found in the past, as expected. Co
tions when Eq.~1.8! is valid for localization of anomalous
diffusion have been well discussed~see Refs.@21,22# and
@26#!. The summary of the analysis is presented in Sec.

II. QUANTUM TRANSPORT FOR THE ACCELERATOR
MODE STRUCTURES: NUMERICAL CALCULATIONS

In this section the long time behavior of the survival pro
ability of a quantum particle in an accelerator mode island
studied numerically. In what follows, we call this type
solution an accelerator mode island structure or, for brev
structure, to stress that for quantum dynamics, both boun
layers and regular parts of the accelerator mode islands
important. Moreover, as it will be seen, the regular part
the islands plays the role of a potential well for the quant
wave packet, while the island boundary layers behave a
potential barrier through which the wave packet tunnels. N
merical study of the problem is based on investigation of
quantum survival probability in some domainDpP
(2p,p) that includes a structure like those shown in Fig.
The main problem in the numerical exploration results fro
the fact that a part of the wave function that belongs to
islands structures propagates as an accelerator mode alop.
A simple way to avoid this type of escape fromDp and to
calculate the probability of the particle remaining inside t
structure, ignoring the parts that leak out fromDp, is to shift
the structure to its original position. A shift by any2n0 in
momentum is induced by the shift operator

Ĵ5exp~2 in0 u!, ~2.1!

which application to an arbitrary wave functionC(u)
5(nf neinu gives

ĴC~u!5(
n

f n ei (n2n0)u5(
n

f n1n0
einu. ~2.2!

Therefore, Eq.~2.1! is equivalent to the application of th
operatore2n0]/]n to amplitudesf n in Eq. ~2.2!. Here we
study accelerator modes, where the change of momentum
one iteration is62p. Therefore, in order to return an acce
erator mode structure to its original position, we have
choosen0562p/h̃. We choose the mode with the initia
angleu05p/2 ~see Fig. 1! and the corresponding shift op
erator withn052p/h̃ in Eq. ~2.1!. Therefore, in the numeri
cal calculations the evolution operator is replaced by
03621
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ĴÛ5exp$2 i h̃~ n̂12p/h̃!2/2%

3exp$2 i ~K/h̃!cosu2 i2pu/h̃%. ~2.3!

Parts of the wave function that are not trapped in the ac
erator mode island do not propagate by12p in p per step.
Therefore the action of the shift on those parts is not sim
related to the dynamics of the part of the wave packet in
region Dp, where the survival probability is calculated. T
avoid complications, these contributions are eliminated
the absorbing boundary conditions at the edges of the in
val Dp. If in this region there areN states with2(N11)/2
<n<(N21)/2 the action of the projection operatorP̂ on an
angular momentum state with the amplitudef n is

P̂f n5H f n : 2
N11

2
<n<

N21

2

0: otherwise.

~2.4!

The quantum map used to follow the evolution of the wa
packet due to the accelerator mode island is therefore

C t115P̂ĴÛC t , ~2.5!

and the survival probability in the regionDp is

P~ t !5uC tu2. ~2.6!

Because of the form of the dynamics Eq.~2.5!, this survival
probability can be interpreted as the survival probability in
specific accelerator mode island, the one nearu05p/2 in our
case. The operatorP̂ĴÛ of Eq. ~2.5! enables us to explore
the survival probability of a wave packet in an accelera
mode island by following one island. Since the decay of
island survival probability is very slow, straightforward ca
culations of the evolution byÛ requires an extremely larg
basis@35#. The shiftĴ keeps the island in its original positio
as explained following Eq.~2.2!. In order to identify the
occupation probability of the island with the one of the i
terval Dp, particles should be eliminated when they rea
the boundary of the interval. This is precisely the effect
the absorbing boundary conditions. The evolution of t
wave function starting from the initial staten50, which is
uniformly spread inu, is presented in Figs. 2 and 3. We s
that after many iterations only the part confined to the isla
survives. Therefore,P(t) is indeed the survival probability
inside the island.

The survival probabilityP(t) was calculated from the ini-
tial state n50 that overlaps the accelerator mode islan
structure. The survival probabilityP(t) as a function of time
is presented in Figs. 4 and 5. The effective Planck’s cons
was taken ash̃52p/(N1g), where g5(A521)/2 is the
inverse golden mean andN is in the interval (53103, 2.5
3104). This choice ofh̃ determines the number of statesN
in a classical unit cell of phase space, such that the class
limit h̃→0 has a transparent meaning of an infinite num
of states in a cell. Another important property of this rep
sentation is irrationality of the reduced Planck’s const
5-3
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h̃/2p, so that the obvious quantum resonances@2,36# result-
ing in ballistic motion^p2&;t2 are avoided. The value of th
effective Planck’s constant is controlled by the variation
N. The simulation time is sufficiently long so that it is long
than the Heisenberg timeN or comparable to it. Different

FIG. 2. The probability amplitude for the four times:~a! t51,
~b! t510, ~c! t5100, and~d! t51000 iterations. The solution is
obtained by iterations of the quantum map~2.5! for K5K (1) and
N55557 with the initial condition forn50.

FIG. 3. The level occupation probability amplitude vs angu
momentum corresponding to the wave functions presented in Fi
03621
f

behavior was found when the initial wave function does n
overlap the accelerator mode island@31#. It will be discussed
at the end of the next Sec. III.

III. QUANTUM TRANSPORT FOR THE ACCELERATOR
MODE STRUCTURES: ANALYTICAL ESTIMATE

We now calculate the tunneling from an accelerator mo
island within some approximations. The map Eq.~1.2! can
be expanded in the small vicinity of the accelerator mod
(p0 ,u0)5(2pm,6p/2) as@14#

r
2.

FIG. 4. Typical evolution of the quantum survival probabili
for N510 557 andK5K (1). The doted lines correspond to the n
merical calculations and solid lines to the analytical formula~3.16!.

FIG. 5. The same as Fig. 4, forK5K (2).
5-4
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QUANTUM LOCALIZATION FOR A KICKED ROTOR . . . PHYSICAL REVIEW E 65 036215
dp85dp6DK2~6 !pdu2,

du85du1dp8, ~3.1!

whereDK5K22pk, dp5p22pm, anddu5u2(6p/2).
For the sake of definiteness we confine ourselves tou
5p/2 ~the result foru52p/2 is identical!. The differences
betweendp8 and dp and betweendu8 and du are very
small, therefore the map Eq.~3.1! can be approximated b
the Hamilton equations generated by the Hamiltonian

Hacc5p2/21V~x!, ~3.2!

wheredp is replaced byp,du by x, and the potential is

V~x!52DKx1
p

3
x3 ~3.3!

and is depicted in Fig. 6. The Hamiltonian,~3.2! with the
potentialV(x) of Eq. ~3.3! was obtained in@8# and in a more
general way in@9#, while the topology of islands produce
by the Hamiltonian was studied in@14#. In the semiclassica
Wentzel-Kramers-Brillouin approximation the tunnelin
probability per unit time of a particle with energyE out of
the potential well is

g~E!5exp$2Sins~E!/h̃%/T~E!, ~3.4!

where Sins(E)5*a
bA2(V(x)2E)dx is the instanton action

the pointsa andb are the limits~turning points! of the mo-
tion under the barrier~see Fig. 6!, andT(E) is the period of
the classical motion with energyE in the well. The survival
probability at the energyE is

PE~ t !5e2g(E)tPE~ t50!. ~3.5!

The resulting total survival probability is

FIG. 6. The potentialV(x)
03621
P~ t !5E
Emin

Emax
dE r~E!•e2g(E)tPE~ t50!, ~3.6!

wherer(E) is the density of states at energyE, while Emax
andEmin are the maximal and minimal energies of states t
are trapped in the well. It was assumed that this semiclass
formula holds for states as high asEmax. This will not intro-
duce a large error because the states in the vicinity ofEmax
decay vary fast. The potentialV(x) of Eq. ~3.3! satisfies
V(2x)52V(x), therefore,

Sins~E!52E
a

b
A2~V~x!2E!dx

52E
a8

b8A2@~2E!2V~2x!#dx

52E
a8

b8
p~2E!dx5S~2E!, ~3.7!

where S(2E) is the action of a periodic orbit of energy
2E in the well ~see Fig. 6!. The symmetry of the potentia
also impliesEmax52Emin[E0. The semiclassical density o
states is

r~E!5
1

2ph̃

dS~E!

dE
5

T~E!

2ph̃
. ~3.8!

Consequently, the survival probability Eq.~3.6! takes the
form

P~ t !5
1

2ph̃
E

2E0

E0
dES dS

dED
3exp@2te2S(2E)/h̃/T~E!#PE~ t50!. ~3.9!

Since there is no general relation betweenS(E) and
S(2E), in order to make progress, an approximation
S(E) will be introduced. It will be approximated by the lin
ear function of energy

S~E!'S01T0E, ~3.10!

whereS0[S(E50) and

T05T~E50!5
dS

dE
uE50

are the action and the period forE50. Within this approxi-
mation the period is approximated by its value at zero ene
T(E)'T0. This approximation should be reasonable for
wide range of energy since even at the separatrix the de
dence of the period on energy is logarithmic, namelyT(E)
; ln(E02E). Within the linear approximation of the actio
Eq. ~3.10!, the survival probability~3.9! takes the form
5-5
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P~ t !5
T0

2ph̃
E

2E0

E0
dE expF2

t

T0
e2S0 /h̃eT0E/h̃GPE~ t50!.

~3.11!

In order to complete the calculation we have to make so
assumptions on the initial distribution. We will assume fi
that PE(t50)5P0, which is independent of energy. The
the integral~3.11! can be evaluated by the change of varia
to y5eT0E/h̃, namely,

P~ t !5
P0

2pEy2

y1dy

y
expF2

ty

T0
e2S0 /h̃G , ~3.12!

wherey65e6T0E0 /h̃. Therefore,

P~ t !5
P0

2p FE1S t

T0
e2(S01T0E0)/h̃D2E1S t

T0
e2(S02T0E0)/h̃D G

~3.13!

and within the linear approximation

P~ t !5
P0

2p FE1S t

T0
e2S(E0)/h̃D2E1S t

T0
e2S(2E0)/h̃D G .

~3.14!

Here E1(z)5*z
`dy e2y/y is the exponential integral@37#.

Note that the arguments of the two terms in Eq.~3.14! can be
very different, their ratio is exp$@S(E0)2S(2E0)#/h̃%
5e2T0E0 /h̃. For small values of its argument the exponent
integral behaves asE1(z)'2C1 ln(1/z), whereC is Euler’s
constant while the large argument asymptotic behavio
E1(z);e2z/z. Therefore, for

t/T0@eS(2E0)/h̃ ~3.15!

the result Eq.~3.14! for the survival probability simplifies
and takes the form

P~ t !5aE1„c~ h̃!t…, ~3.16!

with

c~ h̃!5c1e2c2 /h̃. ~3.17!

For the specific potential~3.3! used in the calculation:a
5P0/2p, while c151/T0 andc25S(2E0). The calculation
presented here was done for the specific potential~3.3! that is
the relevant one for the kicked rotor. Also for other syste
the accelerator mode islands are described by cubic po
tials @9,10# and in this sense the classical dynamics is u
versal, therefore the form Eq.~3.16! with Eq. ~3.17! of the
survival probability is expected to be universal as well. If t
approximation~3.15! cannot be made, and the second term
Eq. ~3.14! cannot be neglected, then Eq.~3.16! should be
replaced by

P~ t !5aE1„c~ h̃!t…2a8E1„c8~ h̃!t…, ~3.18!

where the dependence ofc8(h̃) on h̃ is similar to Eq.~3.17!.
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These predictions are compared with the survival pr
ability inside the accelerator mode island calculated num
cally for the initial staten50, that has large overlap with th
accelerator mode islands. Representative results are show
Figs. 4 and 5, where the numerical simulations are compa
with the analytical prediction Eq.~3.16!, where the param-

etersa and c(h̃) were fitted. ForK (1) these were found to
take the valuesa50.006 and c(h̃)5531027 for N
510 557, and the contribution of the second term in E
~3.18! is negligible. ForK (2) the valuesa50.0028, c(h̃)
510214 and a850.000 64, c8(h̃)51023 for N510 557
were obtained. In order to check Eq.~3.17!, h̃(N) was varied
and the results are presented in Fig. 7. The least square
results inc156031025 andc250.002960.000 03 forK (1),
while c152.2531025 and c250.010460.001 9 for K (2).
From these results one concludes that forK (1) the potential
barrier is more penetrable to quantum tunneling than
K (2). We conclude that for quantum systems, initially pop
lated in the accelerator mode islands, the survival probab
satisfies Eq.~3.16!, therefore,

P~ t !5aH 2C2 ln c~ h̃!t: t!1/c~ h̃!

e2c(h̃)t/c~ h̃!t: t@1/c~ h̃!
~3.19!

andc(h̃) is given by Eq.~3.17!.
It is reasonable to anticipate the same asymptotic beha

of P(t) for the initial population in the chaotic region, be
cause the exponential localization of the wave packet as
as the localization length should be independent of choic

FIG. 7. The tunneling coefficientsc(h̃) vs 1/h̃, where (s) mark
the result of numerical calculations forK5K (1) and (L) for K
5K (2). The solid lines are the slopes obtained by the least squ
fit.
5-6
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QUANTUM LOCALIZATION FOR A KICKED ROTOR . . . PHYSICAL REVIEW E 65 036215
the initial conditions. This result is because wave functio
on the accelerator mode islands structures are coupled to
ones in the chaotic sea via tunneling, and therefore, they
expanded in terms of the same set of eigenfunctions.
asymptotic decay is dominated by the eigenfunctions w
the slowest decay. Consequently, the exponential deca
the survival probability for the initial population in the cha
otic region should be the same as in Eq.~3.19! for asymp-
totically long times„t@1/c(h̃)…. Indeed, for a time shorte
than the quantum–classical crossover, explored in@21,31#,
classical sticking takes place. For longer times the trappin
quantum mechanical and the survival probability is given
Eq. ~3.11! but the initial distribution is proportional to th
probability of tunneling through the barrier, namely,

PE~ t50!5Ae2Sins(E)/h̃, ~3.20!

whereA is a constant. The reason is that for this initial prep
ration the occupation probability of a state is determined
its coupling to the chaotic component@38#. Using Eq.~3.10!
one obtains

P~ t !5
AT0

2ph̃
E

2E0

E0
dE expF2

t

T0
e2S0 /h̃eT0E/h̃Ge2S0 /h̃eT0E/h̃.

~3.21!

Changing the integration variable toy5e2S0 /h̃eT0E/h̃ one
finds

P~ t !5
A

2pEy28

y18 dy e2ty/T0, ~3.22!

wherey68 5e2S0 /h̃e6T0E/h̃, resulting in

P~ t !5
A

2p
•

T0

t FexpH 2
t

T0
e2S(E0)/h̃J

2expH 2
t

T0
e2S(2E0)/h̃J G . ~3.23!

For t/T0@eS(2E0)/h̃ the second term is negligible, resultin
in

P~ t !5be2c(h̃)t/t, ~3.24!

wherec(h̃) is given by Eq.~3.17!. Comparing this result to
Eq. ~3.19! we note that the long time„t@1/c(h̃)… asymptotic
behavior for these two types of initial conditions, one in t
accelerator mode island and the other in the chaotic regio
identical. For short timet!1/c(h̃) the decay of wave packet
started in the chaotic component is much faster, that is,

P~ t !;b/t, ~3.25!

in agreement with the result of@31#. In addition, particles
that were initially in the accelerator mode island may tun
out to the chaotic component and then back into acceler
mode island. Consequently their survival probability beha
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similarly to the survival probability of particles that wer
started in the chaotic component.

IV. THE QUASIENERGY STATES

In this section a form of the quasienergy states implied
the transport found in Secs. II and III is proposed. Any wa
function can be expanded as

c~u,t !5(
v

Cvcv~u,t !, ~4.1!

wherecv(u,t) are the quasienergy states and the expans
coefficients areCv5^cv(u,t50)uc(u,t50)&. Therefore,
localization in transport and localization of the quasiene
states are closely related. In Sec. III the survival probabi
on accelerator mode islands was calculated as a functio
time. Since in one time step a trajectory in the accelera
mode island structure travels a distance 2p in p or 2p/h̃ in
n, in a timet the distance it travels inn is n5(2p/h̃)t. The
resulting spread inn can be inferred from the results of th
previous section simply by the substitution ofh̃n/2p for t.
Consequently, for long distances one concludes from E
~3.19! and ~3.24! that the occupation probability decays as

P̃~n!;e22n/j/n ~4.2!

with

j54p/h̃c~ h̃!5~4p/c1!ec2 /h̃/h̃. ~4.3!

The prefactor cannot be determined reliably from such h
ristic considerations. The quasienergy states are expecte
decay exponentially with the localization lengthj of Eq.
~4.3!. For smallh̃, where our results are derived, it is muc
larger than the localization length Eq.~1.8! resulting from
suppression of normal diffusion by interference. For the
havior on distances shorter thanj, where the decay of the
survival probability is weaker than exponential, the decay
wave functions as a function ofn is weaker than the expo
nential as well. The predictions in this regime are differe
for the two types of initial conditions considered in the pr
vious Sec. III. In general one therefore expects, for distan
smaller than the localization length, that the distribution b
haves as

P̃~n!5A1@2C2 ln~n/j!#1A2 /n, ~4.4!

where the two contributions result from Eqs.~3.19! and
~3.24!. The constantsA1 andA2 are determined by the initia
conditions.

It should be noted that formulas~1.8! and ~4.3! do not
relate to each other, and there is no contradiction betw
them. Theh̃ scaling of the localization length according E
~1.8!, namelyj;1/h̃2, was also observed for anomalous d
fusion with large~in the quantum limit! values ofh̃ as well
@21,22,26#. In this case formula~4.3! cannot be applied, be
cause the values ofh̃ are larger than the accelerator mo
5-7
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island area, and it is impossible to ‘‘put’’ even one lev
inside the island structure. In the opposite regime, whenh̃ is
small enough to make it possible to contain a few levels
least inside the structure, a part of the wave packet sprea
the accelerator mode does. In this case the present analy
valid and formula~4.3! for the h̃ scaling of the localization
length holds.

Because different quasienergies may exhibit different
havior related to the the values ofA1 andA2, it is reasonable
to speculate that their distribution depends only onn/j, since
their behavior is dominated by tunneling andj is the scale
determined by this process. This should hold ifn is suffi-
ciently large so that classical trapping by the boundary
lands chain is not important. For short distances, shorter
those corresponding to time scales shorter thant\;(1/h̃)m

@the time scale corresponding to quantum classical cross
@31# specified by the transport exponentm in Eq. ~1.6!#, the
trapping by the boundary islands chain is of classical orig
This results in various power law decays on the very sh
distances, shorter than 2pt\ /h̃, related to the decay of th
classical survival probability of particles trapped in t
boundary islands chain, relevant for the specific value oK
that is considered. A crucial assumption made in this wor
that the irrationality ofh̃ prevents resonant tunneling b
tween the accelerator mode islands. This assumption stil
quires justification. It is expected to hold for the same r
sons it holds for the other values ofK @7,19#.

V. SUMMARY AND DISCUSSION

In this paper the decay of wave packets by tunneling
of accelerator mode islands was calculated analytically fo
simple model potential~3.3! in the semiclassical limit where
the effective Planck’s constanth̃ is much smaller than the
islands. For this model, analytical expressions for survi
probability were obtained for situations where the init
wave packet is inside the island Eq.~3.14! and in the chaotic
region Eq.~3.23!. With the help of the modified evolution
operator~2.5! the accelerator mode islands could be follow
-

ys

e

03621
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for a very long time. In this way the decay of the surviv
probability of the wave packet in an island could be co
puted and the form of the analytical expression Eq.~3.14!
could be verified. The result Eq.~3.25! for the wave packet
starting in the chaotic region was verified in@31# using the
same numerical method for a relatively short time. It is im
portant to notice that the accelerator mode islands with
chain structure around them form a much more complica
phase space structure than the model potential~3.3!, but the
qualitative behavior of the survival probability is simila
This demonstrates its robustness. The tunneling results in
decay of the classical accelerator modes. It sets a time s
1/c(h̃) of Eq. ~3.17!, leading to a localization lengthj of Eq.
~4.3! for this process. Transitions between the chaotic reg
and the accelerator modes take place by tunneling. Loca
tion that ultimately takes place@39# results in exponentia
localization on a length scale on the order ofj and should be
the subject of further studies.

This work demonstrates how a classical structure in
mixed system~a system where part of the phase space
chaotic and part is regular! decays as a result of tunneling.
the effective Planck’s constant (\ divided by the natural ac-
tion of the system! is small, this time can be extremely long
as is the case in the present work.
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